Package: ihclust 0.1.0

ihclust: Iterative Hierarchical Clustering (IHC)

Provides a set of tools to i) identify geographic areas with significant change over time in drug utilization, and ii) characterize common change over time patterns among the time series for multiple geographic areas. For reference, see below: 1. Song, J., Carey, M., Zhu, H., Miao, H., Ram´ırez, J. C., & Wu, H. (2018) <doi:10.1504/IJCBDD.2018.10011910> 2. Wu, S., Wu, H. (2013) <doi:10.1186/1471-2105-14-6> 3. Carey, M., Wu, S., Gan, G. & Wu, H. (2016) <doi:10.1016/j.idm.2016.07.001>.

Authors:Elin Cho [aut, cre], Yuting Xu [aut], Jaejoon Song [aut]

ihclust_0.1.0.tar.gz
ihclust_0.1.0.zip(r-4.5)ihclust_0.1.0.zip(r-4.4)ihclust_0.1.0.zip(r-4.3)
ihclust_0.1.0.tgz(r-4.4-any)ihclust_0.1.0.tgz(r-4.3-any)
ihclust_0.1.0.tar.gz(r-4.5-noble)ihclust_0.1.0.tar.gz(r-4.4-noble)
ihclust_0.1.0.tgz(r-4.4-emscripten)ihclust_0.1.0.tgz(r-4.3-emscripten)
ihclust.pdf |ihclust.html
ihclust/json (API)

# Install 'ihclust' in R:
install.packages('ihclust', repos = c('https://elincho.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/elincho/ihclust/issues

Datasets:

On CRAN:

2.70 score 1 scripts 164 downloads 3 exports 115 dependencies

Last updated 2 years agofrom:5e88f0c15d. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-winWARNINGNov 11 2024
R-4.5-linuxWARNINGNov 11 2024
R-4.4-winWARNINGNov 11 2024
R-4.4-macWARNINGNov 11 2024
R-4.3-winWARNINGNov 11 2024
R-4.3-macWARNINGNov 11 2024

Exports:ihclustsimcurvetestchange

Dependencies:abindbackportsbase64encbootbroombslibcachemcarcarDatacliclustercodetoolscolorspacecorrplotcowplotcpp11crosstalkdendextendDerivdigestdoBydoParalleldplyrDTellipseemmeansestimabilityevaluatefactoextraFactoMineRfansifarverfastmapflashClustfontawesomeforeachFormulafsgenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehighrhtmltoolshtmlwidgetshttpuvisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevalleapslifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigplyrpolynompromisespurrrquantregR6rappdirsRColorBrewerRcppRcppEigenreshape2rlangrmarkdownrstatixsassscalesscatterplot3dSparseMstringistringrsurvivaltibbletidyrtidyselecttinytexutf8vctrsviridisviridisLitewithrxfunyaml